
Research Topic  

Updated on Oct. 9, 2014 



 

Stream Water Quality, Ecosystem and 

Ecotoxicology Modeling  

 

 

Podjanee Inthasaro’s Dissertation Topic 

(2010) 

 

Supervised by Weiming Wu 

2 



Model Features 

• Water temperature model  

• Water quality and aquatic ecosystem model 

– Dissolved oxygen (DO) 

– Biological oxygen demand (BOD),  

– Nitrogen (ON, NH3, and NO3),  

– Phosphorus (OP and PO4),  

– Non-conservative substance, 

– Four-trophic level food web (phytoplankton, zooplankton, forage 

fish, and predatory fish) 

• Aquatic ecotoxicology model  
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Conceptual framework of the CCHE1D water 

quality and aquatic ecosystem model  
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Water Temperature Model 

Major heat fluxes in the water temperature model  
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Kinetic Processes in Water Column 

The interactions of water quality variables and biotic compartments are based on laws of 

chemistry and bio-chemistry. 

Constituents and state variables 

6 



Water Quality and Aquatic Ecosystem Model  

• Simulation of the fate and transport of constituents under 

either steady or unsteady flow conditions 

• The transport equation described by the following advection-

dispersion equation 
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Dissolved Oxygen (DO) 

• Dissolved oxygen analysis measures the 

amount of gaseous oxygen (O2) 

dissolved in an aqueous solution.  

• Oxygen plays an important role in 

aquatic ecosystems.  

• It is essential for living organisms and 

controls many chemical and biological 

reactions through the oxidation process.  

• It can be removed from or added to 

water by various physical, chemical, 

and biological reactions.  

http://www.chesapeakebay.net 
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Dissolved Oxygen (cont’d) 

• The kinetic processes of DO are described by  
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Biological Oxygen Demand (BOD) 

• BOD is one of the common water quality indicators.  

• It is a measurement of the amount of oxygen required to 

stabilize organic matter in the water.  

• The rate of oxygen consumption is affected by temperature, 

the presence of certain kinds of microorganisms, and the type 

of organic and inorganic material in the water.  
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Phosphorus Cycle 

• Phosphorus in natural water can be divided in several ways.  

– Soluble reactive phosphorus (SRP), orthophosphate, or soluble 

inorganic phosphorus  

– Particulate organic phosphorus 

– Nonparticulate organic phosphorus  

– Particulate inorganic phosphorus  

– Nonparticulate inorganic phosphorus 
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Phytoplankton 

• Autotroph 

• Groups of phytoplankton:  

     diatoms, cyanobacteria, and  

    dinoflagellates 

• Macronutrients: nitrate,  

    phosphate or silicic acid 

• Habitat: at or near water surface 

• The kinetic processes of phytoplankton are calculated as 
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Phytoplankton Processes 
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Grazing of Predator on Prey 
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Zooplankton 

• Zooplankton includes protozoa, small crustaceans, jellyfish 

and worm. 

• Zooplankton is a heterotrophic component that drifts in the 

water column 

• Zooplankton feeds on bacterioplankton, phytoplankton, other 

zooplankton, and detritus. 

• Zooplankton dynamics is calculated by 
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Fish Dynamics 

• Fish is divided into two groups: forage fish (f) and predatory 

fish (p). 

• Simple food chain with a single class is considered in the 

model. 

• The dynamic processes of each group are described as 
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Contaminant Fate and Transport 

• The physicochemical model includes the mechanisms of 

– sorption/desorption interaction between dissolved and particulate 

contaminants, 

– volatilization, 

– microbial decay processes, 

– diffusive exchange of the dissolved contaminant between bed 

sediment and the overlying water column and between layers of 

the bed sediment itself, 

– transport of the contaminant via advective and dispersive 

processes, 

– external inputs of the contaminant, and 

– uptake and depuration of the contaminant due to aquatic 

organisms. 
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• The 1-D governing equation for the fate and transport of a contaminant in 

water column is given as 

 

 

 

 

 

 

 

 

 

 

 

• The source term is computed by 

 

 

 

 

 

 

 

Contaminant Fate and Transport 
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• The contaminant concentrations at various trophic levels of the aquatic 

food web vary according to the following mechanisms: 

o direct uptake of the dissolved contaminant from water, 

o food web accumulation of the contaminant resulting from consumption 

of contaminated prey, 

o depuration of the contaminant due to all loss pathways, and 

o growth and respiration of the organisms. 
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The dynamic processes of concentration of contaminant in 

phytoplankton per unit volume of water is modeled as 

 

 

 

 
 

For higher trophic levels, the input of contaminant due to ingestion 

of contaminated food plays an important role. The rate of change 

in chemical concentration is determined by 
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Biomass loss due to acute toxicity can be estimated based on the 

internal concentration of the toxicant in the biotic organism (Park & 

Clough, 2004) 

 

 

 

 

 

The lethal internal concentration of toxicant for a given exposure 

period can be expressed as  
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The ratio of chronic to acute concentrations is 

 

 

 

 

 

 

The reduction factor for photosynthesis can be calculated by (Park & 

Clough, 2004) 

 

 

 

The reduction factors for growth and gamete loss in animals are 

determined in a similar manner. 
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Tualatin River, Oregon 
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Flow Simulation 
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Water Temperature 
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Water Quality 

• The water quality in the approximately 50 km long reach from 

RM38.4 to RM5.5 of the Tualatin River is modeled from May 

1991 until October 1993.  

• Eight water quality parameters: chloride, ON, NH3, NO3, OP, 

PO4, BOD, and DO are simulated.  

• Phytoplankton and zooplankton biomasses are modeled in this 

study.  

• The simulation domain is represented by 132 cross-sections. 

Each cross-section is divided into 11 panels.  

• The time step for the water quality simulation is 15 minutes. 
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Data Inputs and Model Parameters 
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Chloride Concentration 
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Ammonia Concentration 
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Nitrate + Nitrite Concentration 
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Mean Nitrogen Concentration during May–October 

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Distance Downstream (km)

A
m

m
o
n

ia
 C

o
n

ce
n

tr
a

ti
o
n

 (
m

g
/L

 a
s
 N

)

 

 

Simulated 91

Simulated 92

Simulated 93

Measured 91

Measured 92

Measured 93

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

Distance Downstream (km)

N
it
ra

te
 a

n
d
 N

it
ri

te
 C

o
n
c
e

n
tr

a
ti

o
n

 (
m

g
/L

 a
s
 N

)

 

 

Simulated 91

Simulated 92

Simulated 93

Measured 91

Measured 92

Measured 93

39 



Phosphate Concentration 
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DO Concentration 
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Phytoplankton Biomass Concentration 
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Zooplankton Biomass Concentration 

0.01

0.1

1

10

Tualatin River at River Mile 16.2

 

 

Measured

Simulated

0.01

0.1

1

10

Z
o
o

p
la

n
k
to

n
 B

io
m

a
s
s
 C

o
n

ce
n

tr
a

ti
o
n

 (
m

g
/L

)

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

0.01

0.1

1

10

1991

1992

1993

50 



0.01

0.1

1

10

Tualatin River at River Mile 5.5

 

 

Measured

Simulated

0.01

0.1

1

10

Z
o
o

p
la

n
k
to

n
 B

io
m

a
s
s
 C

o
n

ce
n

tr
a

ti
o
n

 (
m

g
/L

)

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

0.01

0.1

1

10

1991

1992

1993

51 



• US EPA Superfund site (1983) 

• 200-mile reach from Hudson Falls to 

Battery  

• Upper Hudson River (UHR) and 

Lower Hudson River (LHR) 

• PCBs accumulation  

• GE company (1947-1977) 

– Hudson Falls 

– Fort Edward 

• Simulation Domain: Schuylerville to 

Stillwater (163 cross-sections) 

• Simulation Period: 1977-1983 

Schuylerville 
RM181.3 

Stillwater 
RM168.2 

Hudson River, New York 

Fish Creek 

Flately Brook 

http://www.dec.ny.gov/images/wildlife_images/ex02.gif 
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Hydrodynamic Results 
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Phytoplankton and Zooplankton 
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BB 19 98 71 10 0 0 198 

GLDF 18 60 37 23 7 1 146 

PKSD 732 0 0 0 0 0 732 

WS 0 8 9 0 0 0 17 

YP 42 5 0 0 0 0 47 

Total 811 171 117 33 7 1 1140 
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Simulation Results 
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Phosphate 

DO 
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BOD 
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Forage Fish 

Predatory Fish 
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Total PCB Concentration in Water 

at Stillwater 
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PCB Concentration in Fish 
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Conclusions 

• A water temperature model has been implemented in the existing CCHE1D 

model package, which calculates the water temperature by considering four 

major heat fluxes: short-wave radiation, long-wave radiation, latent heat 

flux, and sensible heat flux. 

• An integrated water quality and aquatic ecosystem model has been 

developed to simulate eight water quality constituents and four trophic 

levels: phytoplankton, zooplankton, forage fish, and predatory fish. 

• A contaminant transport and aquatic ecotoxicology model has been 

implemented to simulate the transport of contaminants in water column and 

sediment bed.  

• In bioaccumulation model, the concentrations of toxic chemicals in 

organisms are influenced by the direct uptake from water, depuration, 

respiration, and dietary.  

• The model computes the toxicity effects of contaminants through 

modification factors for the growth, grazing, reproduction, and mortality of 

organisms in the aquatic food web.  

• The model has been applied in the simulation of the fate and transport of 

polychlorinated biphenyls (PCBs) in the Upper Hudson River, New York. 
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